Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
2.
BMC Genomics ; 23(1): 627, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-2009353

ABSTRACT

Genomic surveillance and identification of COVID-19 outbreaks are important in understanding the genetic diversity, phylogeny, and lineages of SARS-CoV-2. Genomic surveillance provides insights into circulating infections, and the robustness and design of vaccines and other infection control approaches. We sequenced 57 SARS-CoV-2 isolates from a Kenyan clinical population, of which 55 passed quality checks using the Ultrafast Sample placement on the Existing tRee (UShER) workflow. Phylo-genome-temporal analyses across two regions in Kenya (Nairobi and Kiambu County) revealed that B.1.1.7 (Alpha; n = 32, 56.1%) and B.1 (n = 9, 15.8%) were the predominant lineages, exhibiting low Ct values (5-31) suggesting high infectivity, and variant mutations across the two regions. Lineages B.1.617.2, B.1.1, A.23.1, A.2.5.1, B.1.596, A, and B.1.405 were also detected across sampling sites within target populations. The lineages and genetic isolates were traced back to China (A), Costa Rica (A.2.5.1), Europe (B.1, B.1.1, A.23.1), the USA (B.1.405, B.1.596), South Africa (B.1.617.2), and the United Kingdom (B.1.1.7), indicating multiple introduction events. This study represents one of the genomic SARS-CoV-2 epidemiology studies in the Nairobi metropolitan area, and describes the importance of continued surveillance for pandemic control.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genome, Viral , Genomics , Humans , Kenya/epidemiology , Phylogeny , SARS-CoV-2/genetics
3.
Clin Microbiol Rev ; 35(3): e0016821, 2022 09 21.
Article in English | MEDLINE | ID: covidwho-1731254

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global public health disaster. The current gold standard for the diagnosis of infected patients is real-time reverse transcription-quantitative PCR (RT-qPCR). As effective as this method may be, it is subject to false-negative and -positive results, affecting its precision, especially for the detection of low viral loads in samples. In contrast, digital PCR (dPCR), the third generation of PCR, has been shown to be more effective than the gold standard, RT-qPCR, in detecting low viral loads in samples. In this review article, we selected publications to show the broad-spectrum applications of dPCR, including the development of assays and reference standards, environmental monitoring, mutation detection, and clinical diagnosis of SARS-CoV-2, while comparing it analytically to the gold standard, RT-qPCR. In summary, it is evident that the specificity, sensitivity, reproducibility, and detection limits of RT-dPCR are generally unaffected by common factors that may affect RT-qPCR. As this is the first time that dPCR is being tested in an outbreak of such a magnitude, knowledge of its applications will help chart a course for future diagnosis and monitoring of infectious disease outbreaks.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Humans , Pandemics , Real-Time Polymerase Chain Reaction/methods , Reproducibility of Results , SARS-CoV-2/genetics , Sensitivity and Specificity
4.
PLoS One ; 16(12): e0260989, 2021.
Article in English | MEDLINE | ID: covidwho-1632658

ABSTRACT

BACKGROUND: Camps of forcibly displaced populations are considered to be at risk of large COVID-19 outbreaks. Low screening rates and limited surveillance led us to conduct a study in Dagahaley camp, located in the Dadaab refugee complex in Kenya to estimate SARS-COV-2 seroprevalence and, mortality and to identify changes in access to care during the pandemic. METHODS: To estimate seroprevalence, a cross-sectional survey was conducted among a sample of individuals (n = 587) seeking care at the two main health centres and among all household members (n = 619) of community health workers and traditional birth attendants working in the camp. A rapid immunologic assay was used (BIOSYNEX® COVID-19 BSS [IgG/IgM]) and adjusted for test performance and mismatch between the sampled population and that of the general camp population. To estimate mortality, all households (n = 12860) were exhaustively interviewed in the camp about deaths occurring from January 2019 through March 2021. RESULTS: In total 1206 participants were included in the seroprevalence study, 8% (95% CI: 6.6%-9.7%) had a positive serologic test. After adjusting for test performance and standardizing on age, a seroprevalence of 5.8% was estimated (95% CI: 1.6%-8.4%). The mortality rate for 10,000 persons per day was 0.05 (95% CI 0.05-0.06) prior to the pandemic and 0.07 (95% CI 0.06-0.08) during the pandemic, representing a significant 42% increase (p<0.001). Médecins Sans Frontières health centre consultations and hospital admissions decreased by 38% and 37% respectively. CONCLUSION: The number of infected people was estimated 67 times higher than the number of reported cases. Participants aged 50 years or more were among the most affected. The mortality survey shows an increase in the mortality rate during the pandemic compared to before the pandemic. A decline in attendance at health facilities was observed and sustained despite the easing of restrictions.


Subject(s)
COVID-19/epidemiology , Pandemics , Refugee Camps/statistics & numerical data , Adolescent , Adult , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Infant, Newborn , Kenya/epidemiology , Male , Middle Aged , Retrospective Studies , Seroepidemiologic Studies , Young Adult
5.
J Vis Exp ; (169)2021 03 31.
Article in English | MEDLINE | ID: covidwho-1192273

ABSTRACT

Diagnosis of the ongoing SARS-CoV-2 pandemic is a priority for all countries across the globe. Currently, reverse transcription quantitative PCR (RT-qPCR) is the gold standard for SARS-CoV-2 diagnosis as no permanent solution is available. However effective this technique may be, research has emerged showing its limitations in detection and diagnosis especially when it comes to low abundant targets. In contrast, droplet digital PCR (ddPCR), a recent emerging technology with superior advantages over qPCR, has been shown to overcome the challenges of RT-qPCR in diagnosis of SARS-CoV-2 from low abundant target samples. Prospectively, in this article, the capabilities of RT-ddPCR are further expanded by showing steps on how to develop simplex, duplex, triplex probe mix, and quadruplex assays using a two-color detection system. Using primers and probes targeting specific sites of the SARS-CoV-2 genome (N, ORF1ab, RPP30, and RBD2), the development of these assays is shown to be possible. Additionally, step by step detailed protocols, notes, and suggestions on how to improve the assays workflow and analyze data are provided. Adapting this workflow in future works will ensure that the maximum number of targets can be sensitively detected in a small sample significantly improving on cost and sample throughput.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , DNA Primers , Humans , Pandemics , RNA, Viral/genetics , Reverse Transcription , Sensitivity and Specificity
6.
Expert Rev Mol Diagn ; 21(1): 119-129, 2021 01.
Article in English | MEDLINE | ID: covidwho-1003446

ABSTRACT

Introduction: With the ongoing SARS-CoV-2 pandemic, different articles have been published highlighting the superiority of droplet digital PCR (ddPCR) over the gold-standard reverse transcription PCR (RT-PCR) in SARS-CoV-2 detection. However, few studies have been reported on developing multiplex ddPCR assays for SARS-CoV-2 detection and their performance. This study shows steps on how to develop different ddPCR SAR-CoV-2 assays including higher order multiplex assays for SARS-CoV-2 detection and antiviral screening.Methods: Using multiple primer/probe sets, we developed, optimized, and analyzed the performance of simplex (1 target), duplex (2 targets), triplex probe mix (3 targets), and quadruplex (4 targets) SARS-CoV-2 ddPCR assays based on a two-color ddPCR detection system.Results: Results showed that the quadruplex assay had similar limits of detection and accuracy to the lower multiplex assays. Analyzing 94 clinical samples demonstrated that the ddPCR triplex probe mix assay had better sensitivity than the RT-qPCR assay. Additionally, the ddPCR multiplex assay showed that remdesivir could inhibit the growth of SARS-CoV-2 in vitro while another testing drug could not.Conclusion: Our research shows that developing multiplex ddPCR assays is possible by combing probe mix and amplitude-based multiplexing, which will help in developing multiplexed ddPCR assays for different SARS-CoV-2 applications.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Multiplex Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , Antiviral Agents/pharmacology , DNA Primers/genetics , False Positive Reactions , Humans , Limit of Detection , Pandemics , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Reproducibility of Results , Sensitivity and Specificity , Temperature , Viral Load/methods
SELECTION OF CITATIONS
SEARCH DETAIL